Is Silicon Photonics a Disruptive Technology?

Source: Luxtera with text added by LightCounting
Table of Contents

Table of Contents ... 2
List of Figures.. 3
Abstract: ... 5
Executive Summary ... 6
Defining integration ... 6
Market size for discrete and integrated optical transceivers 7
Market segmentation by technology ... 9

Chapter 1: Setting the right expectations, tracking progress and charting the future of integrated optical devices ... 2
Optical Processors ... 12
Optical switches ... 14
Optical transceivers ... 15
Optical Cables and Interconnects .. 18
Integration of optics with electronics ... 21
The long term advantage of Silicon Photonics ... 24

Chapter 2: Indium Phosphide-based Products and Technologies 26
Main applications and market segments ... 26
Technology and Manufacturing .. 28
Integrated DWDM products ... 31
Integrated Ethernet Products ... 36
Integrated FTTx products ... 37
Market Forecast for discrete and integrated InP products .. 39

Chapter 3: GaAs ... 43
Main applications and market segments ... 43
Technology and Manufacturing .. 45
Integrated VCSEL products .. 46
Market Forecast for discrete and integrated GaAs products ... 49

Chapter 4: SiP technology, products and markets ... 53
SiP technology ... 54
SiP products for Ethernet and AOC/EOM applications ... 57
SiP-based DWDM products .. 59

Chapter 5: Is Silicon Photonics a disruptive technology? ... 63
Counterbalancing of the “marketing machine” ... 64
Disrupting design and manufacturing practices ... 65
Does a technology need to be disruptive in order to be successful commercially? 67
Continuing Investment into Silicon Photonics and other integration technologies 68

Appendix A: Profiles of selected vendors ... 70
ColorChip (http://color-chip.com) ... 70
Kaiam (http://www.kaiam.com) ... 71
Luxtera (http://www.luxtera.com) ... 71
Ranovus (http://ranovus.com) .. 72
Rockley Photonics (http://rockleyphotonics.com) .. 73
List of Figures

Figure E-1: Shipments and Sales of optical transceivers based on discrete and integrated optical components... 7
Figure E-2: Sales of integrated products sorted by scale or complexity of integration........ 8
Figure E-3: Shipments and Sales of optical transceivers segmented by technology........ 9
Figure 1-1: Artistic illustration of an all-optical processor... 13
Figure 1-2: Optical logic element in the Ising machine chip.. 13
Figure 1-3: Switching ASIC combined with 2D VCSEL and detector arrays............... 15
Figure 1-4: Shipments of Optical Transceivers by Market Segment............................ 17
Figure 1-6: AOCs vs. DACs in Infiniband, Ethernet and Consumer applications............ 19
Figure 1-7: Annual shipments of Active Optical Cables (AOCs) and Embedded Optical Modules (EOMs)... 20
Figure 1-8: Blade from Oracle Infiniband switch, showing EOMs around switch ASIC 21
Figure 1-9: 40 Gbps optical transceiver on a single CMOS chip.................................... 22
Figure 1-10: 100G PSM4 CMOS wafer bonded transceiver chip............................... 23
Figure 1-11: 100G PSM4 transceiver integrated on a single BiCMOS chip................... 23
Figure 1-12: The electro-optic system on a chip... 25
Figure 2-1: Optical transceiver market by technology... 26
Figure 2-2: Shipments and Sales of InP-based optical transceivers (discrete and integrated combined) by market segment.. 27
Figure 2-3: Design of a Directly Modulated Laser (DML) chip...................................... 28
Figure 2-4: Design of an Electro-absorption Modulated Laser (EML) chip............... 29
Figure 2-5: Illustration of InP laser manufacturing process... 30
Figure 2-6: Illustration of “the “eye-diagram test” performed by an engineer................. 31
Figure 2-7: Schematic and photo of an integrated 500G PM-DQPSK transmitter chip 32
Figure 2-8: Infinite Capacity Engine by Infinera... 33
Figure 2-9: Size and cost reduction of 10G DWDM transceivers................................. 34
Figure 2-10: InP Mach-Zehnder (MZ) modulator co-packages with a tunable laser. Close-up image of MZ modulator chip... 35
Figure 2-11: EA and MZ modulators integrated with tunable lasers............................. 35
Figure 2-12: Designs of 4x25G laser optical sub-assembly (OSA) for 100GBe transceiver... 37
Figure 2-13: Schematic of bidirectional optical sub-assembly (BOSA)......................... 37
Figure 2-14: FTTx products developed by Xponent.. 38
Figure 2-15: Photo and functional diagram of an InP chips developed by OneChip.......... 39
Figure 2-16: Shipments and Sales of InP-based discrete and integrated optical transceivers 40

40
Figure 2-17: Shipments and Sales of InP-based discrete products by market segment 41
Figure 2-18: Shipments and Sales of In-P integrated products by market segment....... 42
Figure 3-1: Sales of GaAs, InP and Silicon Photonics based transceivers...................... 43
Figure 3-2: Shipments and Sales of GaAs products (discrete and integrated combined) by market segments... 44
Figure 3-3: Design of a VCSEL chip.. 45
Figure 3-4: Photo of a 4x25G VCSEL array chip (0.4x1mm in size) ..46
Figure 3-5: Examples of 12X25G VCSEL array products. TE Connectivity Coolbit Optical Engine and Finisar 25G BOA (board-mounted optical assembly)..............................47
Figure 3-6: Compass EOS Optically-Enabled ASIC (schematic and photo)..............................48
Figure 3-7: Shipments and Sales of GaAs-based discrete and integrated optical transceivers ..49
Figure 3-8: Shipments and Sales of GaAs-based discrete products by market segment50
Figure 3-9: Shipments and Sales of GaAs-based integrated products by market segment.....51
Figure 4-1: Sales of optical transceivers based on SiP technology.................................54
Figure 4-2: SiP-based optical elements: couplers, detectors, waveguides and modulators...54
Figure 4-3: SiP optical engine based on a grating coupler ..55
Figure 4-4: Basic design of a SiP modulator ...56
Figure 4-5: PAM4 MX modulator design and PAM4 eye diagram ..56
Figure 4-6: Germanium Franz-Keldysh modulator and Germanium detector57
Figure 4-7: Design of SiP-based PSM4 optical transceivers ...57
Figure 4-8: Design of SiP-based CWDM4 optical transceivers ..58
Figure 4-9: Sales of 40GbE, 100GbE, 200GbE and 400GbE optical transceivers by technology ..59
Figure 4-10: Design and performance of QAM-16 SiP modulator60
Figure 4-11: Design of 100G DWDM CFP transponder ..60
Figure 4-12: Design and Photo of Acacia's coherent PIC ..61
Figure 4-13: Sales of 100G/200G/400G DWDM transponders by technology61
Figure 4-14: Shipments and Sales of Silicon Photonics products by market segment62
Figure 5-1: Impact of disruptive technologies on product performance and markets63
Figure 5-2: Illustration of changes in profitability during product lifecycle66
Figure 5-3: Infinera's product sales ...68
Table 5-1: Summary of start-up funding and acquisitions ...68
Figure A-1: Illustration of SystemOnGlass technology used for CWDM4 transceivers70
Figure A-2: Illustration of Kaiam's integration approach ..71
Figure A-3: Illustration of Kaiam's packaging approach ..72
Figure A-4: 100G PSM4 transmitter manufactured by Luxtera ..73
Figure A-5: DWDM transmitter designed by Ranovus ...74
Figure A-6: 100G PSM4 transceiver chip made by Sicoya ...75
Abstract:

The potential impact of photonic integration on the optical communications market has captivated the imagination of the industry for the last two decades. Recent successes by vendors developing integrated products using Silicon photonics (SiP) has led to several mergers and high-value acquisitions in 2012-2016. Shipments of SiP-based products started to ramp 2014-2015 and exceeded $600 million in 2016.

It is clear by now that optical integration technologies, including SiP, are making a very significant impact on the market. The question is whether SiP can replace more mature Indium Phosphide (InP) and Gallium Arsenide (GaAs) technologies, which dominated the market over the last decade and already enabled a variety of integrated products?

This report offers an analysis of the impact made by integration on the market for optical transceivers and related components in 2010-2016. It offers a forecast for shipments and sales of discrete and integrated products based on InP, GaAs and SiP technologies for 2017-2022. The forecast is segmented by main applications, including Ethernet, WDM, Active Optical Cables (AOCs) and Embedded Optical Modules (EOMs) and a few others. Products are sorted by data rate, reach and form factor into more than 150 categories.