

HIGH SPEED CABLES, EMBEDDED AND CO-PACKAGED OPTICS

DECEMBER 2022

Source: Exhibit at OCP Summit 2021, photo by LightCounting

Table of Contents

Abstract	5
Executive Summary	6
Growth in Sales of AOCs and DACs will continue in 2024-2027, after a pause in 2023	6
Networks in Al Clusters and HPCs need a lot more bandwidth	7
Access to Memory is another bottleneck for Al Clusters and HPCS	8
co-packaged optics is the right solution for HPCs and Al Clusters	9
Cloud Companies see their Future in Al	10
Chapter 1: AOCs, DAC, AECs and Fly-over cables	12
AOC Advantages from the Buyer's Perspective	12
AOC Disadvantages from a Buyer's Perspective	12
AOCs vs. Direct Attach copper Cables (DACs)	12
AECs vs. DACs and AOCs	14
AOC Advantages from the Manufacturer's Perspective	16
Closing Off Photonics to the Outside World	16
AOC Transceiver MSA's	17
QSFP Form Factor Family	17
QSFP-Double Density – Extending the legacy	18
SFP	18
CXP	18
Mini SAS HD	19
Flyover Connections Using Twinax Cabling	20
Chapter 2: Embedded Optical Modules (EOMs) and Near-Package Optics (NP	O) 25
What Is An Embedded Optical module?	25
Potential benefits of EOMs	26
Reduced Chip-to-Module Interconnect Challenges?	26
Reduced power consumption?	27
Thermal management	28
Faceplate or Backplane Density	29
Ruggedness	31
Main EOM Adoption Limiting Factors	31

EOMs are an Evolving Transceiver Market Segment	32
The EOM business is commercially complex!	32
EOMs Are Not New	34
EOM Products and Trends	34
Line Rates shifting from 10Gb/s to 25Gb/s	34
Number of Channels Vary	34
Simplex devices giving way to Duplex	35
Connectors for EOM PCB attach	35
No standard yet for EOM Fiber attach	36
EOM Thermal Issues Challenging but Options Exist	37
HP Labs built VCSEL-based CWDM EOMs for The Machine	37
Near Package Optics (NPO)	39
Chapter 3: Co-Packaged Optics (CPO)	40
What Is Co-Packaged Optics?	40
Co-packaged Optics is the Logical Next Step	40
ARPA-e ENLITENED Program	42
IBM Awarded Two Development Contracts for ARPA-E ENLIGHTENED Program	42
DARPA PIPES Program -Photonics in the Package for Extreme Scalability	43
Broadcom's plans have to be taken seriously	46
Why start with 25 Tb?	48
The new ecosystem.	49
Chapter 4: Applications and Markets	51
The AOC Market Expands	51
EOM and CPO Markets continue to Evolve	51
High Performance Computing and Al Clusters	52
HPC Market's continued Growth	53
Key AOC and EOM Customers: The Top 500 HPCs	53
Leading Supercomputers using AOCs: some examples	56
The Future Market for Optical Interconnects in Supercomputers	61
HPE EX supercomputer architecture that uses '200GbE'	63
Fuiitsu Supercomputers ditched EOMs for AOCs	64

	HPE Supercomputers (non-Cray)	65
	Good AOC Opportunities in Mid-range HPC Clusters	66
	Cloud Providers Now Offer HPC Systems	67
	Artificial Intelligence systems continue to scale	67
	New CPU-Memory-Accelerator Fabrics bring New Opportunities	70
	CXL	72
	NVLink	73
	UCIe	73
	Core Routing Systems	74
	The Future Market for Optical Interconnects in Core Routers	75
	As the core router market expands so does optical Interconnect deployments	75
	Cloud Data Centers	79
	Server-to-Switch Links Create AOC Opportunities	79
	100G and 200G SerDes Open Up countless opportunities	80
	Military/ Aerospace/ Other Applications	81
C	hapter 5: Forecast and Analysis	87
	AOC Forecast by Market Application	88
	How AOCs are used in each market segment:	88
	AOC/DAC Unit Shipments Forecast and Analysis	90
	AOC Pricing Forecast and Analysis	93
	Forecast for sales of AOCs, DACs and AECs	94
	EOM and CPO Forecast	96
	External laser Modules	98
	CPO Forecast by Application	99
	Product Dashboard Feature	99

Abstract

This report examines the optical interconnect segments that have long served as data bridges between elements of large systems or clusters.

Active Optical Cables (AOCs) embed optical transceiver technologies into enclosed cables that hide the high-speed optics behind two transceiver ends with an electrical interconnect presented to the outside. This factor enables creating high aggregate data rate links at costs significantly below that of two separate connectorized transceivers and fibers. AOCs gained market share by offering longer reaches than passive Direct Attached Copper (DACs) and Active Electronic Copper (AEC) cables, also examined in this report.

This report also examines the product segment that embeds optical interconnect technologies <u>inside</u> computer and communication systems with **Embedded Optical Modules (EOMs)**. As data rates reach 100Gbps, reducing the length of PCB traces on circuit boards becomes even more critical. Placing on-board optics into one package with ASICs offers a solution for the future. This approach creates a new set of products known as **Co-Packaged Optics (CPO)**.

The report includes historical data (2016-2022) and forecast (2023-2027) for shipments, revenues and average selling prices for the products mentioned above. We analyze technologies, market trends, protocol transitions, data rates, and MSAs for InfiniBand, Ethernet and other protocols. Application segments are reviewed in detail and 20 categories of products are individually tracked, forecasted and mapped into four application segments: High Performance Computing (HPC) and AI Clusters, Cloud data center compute nodes, Core Routing & Optical Transport, and lastly Military/Aerospace applications.

The report is based on confidential sales information and detailed analysis of publicly available data released by leading component and equipment manufacturers. It incorporates new information from numerous interviews across both the supply chain and the consumption side of the industry.

This LightCounting market report contains material that is a confidential, privileged, company product for the sole use of the intended recipients being LightCounting clients and subscribers. Any review, reliance on, redistribution by others or forwarding without LightCounting's expressed permission is strictly prohibited.

For more information, go to: www.lightcounting.com

Or follow us on Twitter at: www.twitter.com/lightcounting